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An Introductory Tutorial To Bayesian Statistics

Balgobin Nandram1

ABSTRACT

Bayesian statistics is considerably different from non-Bayesian statistics, primarily
because in Bayesian statistics the parameters are stochastic while in non-Bayesian statistics
the parameters are not. This stochastic nature allows Bayesians to input prior information in a
coherent manner using probabilistic methods, and to make interpretations that are desirable
even by non-Bayesians. The extra step in Bayesian statistics is the assignment of distributions
for the stochastic parameters. This can be obtained if there is prior information (informative
prior) or no prior information (non-informative prior). The process that produces the data are
the same in both frameworks. All inference is obtained by exploiting the posterior density,
obtained through an application of Bayes' theorem. In most practical applications, the
posterior distribution is complex, and there is a need for computation usually achieved
through Markov chain Monte Carlo methods. This paper is an introductory tutorial in which I
review basic 'procedures in Bayesian statistics.

Key Words: Bayes' theorem; Credible interval; Gibbs sampler; Model choice and
assessment; Proper prior.

I. INTRODUCTION

21

Lindley (1983) stated that "Bayesian statistics is based on one, simple idea: the only
satisfactory description of uncertainty is by means of probability. We are, all of us,
surrounded by uncertainty: it plays a dominant role in all our lives. The Bayesian paradigm
provides, in probability, a powerful tool for understanding, manipulating and controlling this
pervasive, and often unpleasant, feature of our appreciation of our environment. The practical
import is immediate: any unknown quantity should be described probabilistically." Indeed,
this statement, made by one of the fathers of Bayesian statistics, is profound.

Suppose your interest is on a quantity, or set of quantities, (J and some data D are
available, and D has some relationship on the uncertainty of (J, via a probability density (or
mass) function, p(D I(J). (Here D is known but (J is unknown.) The Bayesian view says
that the appropriate description of your knowledge of (J in the presence of D is by the
probability of (J, given D, and written as 1l'((JID) . Lindley (1983) stated that the Bayesian
paradigm can be thought ofas the following recipe:

(1) What is uncertain and of interest to you? Call it (J and summarize the
information about (J in a probability distribution, denoted by 1l'((J) , called the
prior distribution.

(2) What data do you have that bear a relationship with (J? Call it D, and
specify the distribution D given (J, namely the conditional
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distribution p(D IB). Viewed as a function of B this is the likelihood

function.

(3) Then calculate tr(B ID) , called the posterior distribution.

The calculation in (3) is done using the rules of probability. All these rules start with the
Axioms of Probability (e.g., the Kolmorgorov probability space). Then all information about
B resides in tr(B ID), and all inference proceeds by examining this distribution using

~

summary statistics or preferably graphical methods (i.e., plotting the posterior distribution).

An essential feature of the scientific method is the collection of data D, preferably by
controlled experimentation or designed surveys, or alternatively by observational studies.
Here randomization is of key importance to ensure data of high quality are obtained. Other
data (e.g., observational studies) are also -covered, but just as in non-Bayesian statistics
inference is limited by the data collection mechanisms.

Bayes' theorem states that
tr(B ID) ex: p(D IB)tr(B).

That is, the posterior is proportional to prior x likelihood. There is nothing subjective about
Bayes' theorem; any elementary text book in probability shows how Bayes' theorem follows
directly from the Axioms of Probability together with the basic notion of conditional
probability.

Of fundamental importance is the likelihood principle, and it states that the totality of
information about Bprovided by D, is given by the likelihood function of B for the
observed data, D. The principle requires consideration of a unique D, that is observed, but
all possible values of B. The problem of non-Bayesian method is in the violation of this
principle. By considering data values that might have occurred but did not, as with a tail area
(significance test or confidence interval), non-Bayesians become incoherent because they
imagine "hypothetical" repetitions of an experiment. It is only after the data are observed that
the principle applies. Indeed, almost all situations ultimately call for a judgment about a
unique occasion and it is a great strength of the Bayesian view that it can handle them.
Clearly, this is a weakness of the non-Bayesian view. Note that the notion of a sufficient
statistic (non-Bayesian) is important because one automatically conditions on the sufficient
statistic in the likelihood function.

Thus, in the Bayesian paradigm, there is a prior distribution on the parameters, say B.
This prior distribution is assigned by the user. There may be substantial prior information,
and so informative prior distributions are used. In other situations, virtually no information
might exist, and then the user chooses non-informative prior distributions. Strictly speaking, a
non-informative prior is one that is constant on the support of the likelihood function. Non
informative priors are typically improper. Letting p(B) be a prior distribution on (-00,00),

.then p(B) is proper if [, p(B)dB < 00; otherwise p(B) is improper. It is important to check

that the posterior density is proper when there are improper priors; otherwise inference may
, be unreliable.
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I discuss five major aspects of Bayesian statistical procedures in this paper. First,
prior construction is discussed. The most important issue in Bayesian statistics is what is the
appropriate prior. Whether an informative prior or a noniformative prioris needed is an
important issue. Once a prior is selected, by using the rules of probability, the posterior
density follows mechanically. Second, how to summarize the posterior density using credible
intervals is discussed. When a posterior density is obtained, the best way to proceed with the
analysis is to present a picture of the posterior density. With many parameters this is
generally inconvenient and difficult. An alternativeprocedure is to present the posterior mean
and the posterior standard deviation, but these are not adequate when the posterior density is
skewed. Thus, a good standard alternative is to present a 95% credible interval. Third,
hypothesis testing using the Bayes factor is discussed. Bayesians use test of hypotheses,
based on a probabilistic structure. Bayesians view hypotheses as models, and models are
random (i.e., there is a probability mass function over the set of models). Fourth, the Gibbs
sampler, the workhorse for Bayesian computations, is discussed. In most practical problems
much computation is needed, and this computation is generally based on Markov chain
Monte Carlo methods with algorithms such as the Gibbs sampler. These algorithms are
iterative; they need a "bum-in" period and a Markov sequence of multivariate vectors is the
output. The Gibbs sampler is routinely used for such computation, and it can be adopted to
perform the computation in almost any application, although there are more efficient
samplers in more complex problems. Finally, model choice and assessment are discussed. In
ariy scientific investigation, it is usually important to select a model, and to assess how well
the selected model works. Bayesians have modified non-Bayesian methods such as those
based on cross-validation and deviance analyses.

This paper has six more sections. In Sections 2, 3, 4, 5,6, I discuss prior construction,
credible intervals, hypothesis testing, Markov chain Monte Carlo methods with special
emphasis on the Gibbs sampler, and model choice and assessment. Section 7 has a discussion
which highlights my experience in Bayesian statistics.

II. PRIOR CONSTRUCTION

In the absence of information, a Bayesian chooses a reference prior (i.e., a type of
noninformative prior that any, other Bayesian might use) because this choice reduces
subjectivity. In fact, these prior distributions might be called objective or noninformative and
are chosen with respect to the principle ofinvariance (e.g., Jeffreys' prior). One characteristic
of these distributions is that the integral over the whole parameter space does not exist,
thereby 'making them noninformative. The procedure for constructing Jeffreys' objective

prior is to use a prior distribution p(O) IX JI /(0) I where 1/(0) I is the determinant of
1.I.d.

Fisher's information. Suppose XI ,..., XIIi Iu, o? '" Normal(p, (j2). If p and (j2 are treated.

independently, p(p,(j2) IX 1/(j2 (i.e., p(p) = I and p«(j2) IX 1/(j2); otherwise

p(p,(j2) IX 1/«(j2)3/2. The difference between these two priors is negligible, but generally one

uses p(p, (j2) IX 1/(j2 .

One might use other kinds of noninformative priors, called (proper diffuse priors), in
practice, especially in more complex problems when it may be difficult to calculate Fisher's
information. Two simple examples are now _described. In the simple problem,
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P - Normal(po~O'/)' where Po = x = L:Ix/nand 0'; = 100s2 with

S2 =L;=l (Xi - X)2 /(n -1); the scale factor of 100 makes it close to a noninformati~e prior but

still proper. Also one can take 0'-2 - Gamma(a,b), where a = b = .001 for a proper but

almost noniformative prior distribution; the use of this prior distribution is' controversial
o

(Gelman 2004). However, one can use the prior density p(0'2) =a/(a+0'2)2, 0'2 >0, which

is proper, has median at J!., and has none of the moments. One needs to specify a, but
typically one can take a =1. These proper diffuse priors are generally used by WinBUGS
(see Cowles, 2004).

In general, for scale parameters, say like 0'2, p(0'2) IX 1/0'2 and for location

parameter like u , p(p) =1. For a parameter like p, in the interval (0,1) one would take

p - Uniform(O,l), a proper prior. The notion here is that the probabilities of being in

intervals on the support of the same widths are the same; hence such prior distributions are
noniformative. However, when noniformative priors are used, one must be cautious about
propriety in the posterior distribution. Although it ·is frequently the case that the posterior
distribution is proper with improper prior, it is possible to have improper posterior
distribution, unknown to the user. Thus, whenever noninformative (improper) priors are used,
one needs toprove propriety, an important mathematical exercise.

One might have genuine prior information, and in that case such prior distributions
. i.i.d. .

lead to large gains in precision. Suppose that xp " " x
nt

Ip-: Bemoulli(p). It is possible to

choose aconjugate prior density for P, in which the prior and the posterior are in the same

family (i.e., as a. function of P the prior and the likelihood have the same forms). Thus, we

take .p - Beta(a,b), where one must specify a and b, and the posterior. density is

P Ix - Beta(s +a.n - s +b), where x =(xw ..,xj with s =L;=I Xi' With no prior

information, one can take a = b = 1/2 for Jeffreys' prior or a = b = 1, a uniform prior, both
proper. Although these are almost the same, there may be important difference in some
situations (e.g., for calculating a Bayes factor or when integrating over the prior distribution).
In an important practical situation, a scientist might expect p somewhere between 'Po and

PI with high confidence. Letting Pm =(PI +Po)/2 and P, =(PI - Po)/2, by equating

moments with the Beta(a,b) density, one can take a~p;(l-Pm)/P; and

b ~ Pm(1- Pm)2 /p;.

ID. CREDffiLE INTERVALS

Let f(O Id) denote the posterior density of a parameter 0 given data d. An interval

(a,b) is called a 100(1- a)% credible interval if its posterior probability content is 1-a ,

that is, rf (0 Id)d0 =1-a . Thus, credible intervals are not unique, but they are still useful.

There are two ways to construct credible intervals: numerical and sampling-based.

First, let F(O Id) =.L f(t Id)dt be the cumulative distribution function (edt). Let F-I(.I d)
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be the inverse cdf: Then a=F-1(tld) and b=p-I(1-tld) give the 100(1-a)% credible

interval (a,b). Second, draw a random sample of 1,000 values from f(8.ld). Arrange the

values in ascending order, O(J) < 0(2) < ...< 0(1000)" Then an estimator obtained from these
order statistics of the 95% credible interval is (0(25),0(976». This method is usually used in

complex problems, and it works well for large samples (i.e., about 1000). In Bayesian
analysis, we can obtain a sample as large as we please (subject to the capability of the
computer).

Not only should we be concerned with the probability content of the interval, but we
wish to use the interval with the highest posterior density, whenever it is possible. A
100(1-a)% credible interval (a,b) is the highest posterior density (HPD) interval if for any

OJ e(a,b) and 0i ~(a,b), f(Olld)~f(02Id). In other words, the height of any point of the

density within the HPD interval is greater than for any point outside the interval.. ,

The 100(1- a)% HPD interval is unique for any unimodal posterior density. If the
mode is on a boundary of the parameter space, then that boundary is one of the end points of
the interval. The 100(1- a)% HPD interval is the shortest interval with 100(1- a)%

coverage. For a unimodal posterior density the 100(1- a)% HPD interval is obtained by

using a single equation. Let F(a Id) =. t f(O Id)dO. If f(O Id) is a unimodal posterior

density with its mode on the lower boundary B, the interval is rf(O Id)dO =1-a, or

simply (B,F-1(a Idj). If f(B Id) is a unimodal posterior density with mode not on the

boundary, f(a I)d) = f(b Id), F(a Id) - F(b Id) = rf(O Id)dB = I-a, and solving in terms

of a,

f(a Id) = f(b Id) =f(F-1[F(a)+(1-a)]).

For a symmetric density, the equal ordinate condition guarantees equal tails, and therefore,
the HPD interval is the same as the credible interval with equal tails.

I provide a simple example with an illustration. Let
i.i.d: •

xl'...,xn Iu.a? '" Normal(,u,cr2
) , and consider the noninformative prior p(,u,cr2

) cc ~.
I U

For Bayesians, letting x = L;=l xIn and S2 = L;=, (Xi - x)2/(n -1), :1-;;' Ix - tn-J and for

non-Bayesian ,u -; I,u - t n-I' where tn_I is the Student's t density on n -1 degrees of
sl "lin

freedom. Then, in either case a 100(1- a)% HPD or confidence interval'for ,u is
_ s
X ± ~tn-J.a/2'

where tn-J. a /2 is the 100(1-a) percentile point of the Student's t density on n -1 degrees of

, freedom; see Box and Tiao (1973) for similar examples. As an illustration a sample of 60
young white males from Middlesex, Massachusetts, had their body mass indices (BMI)
measured. Their average BMI is 20.38 and their standard deviation BMI is 5.24, and



26 Naridram: An Introductory Tutorial To
Bayesian Statistics

assuming normality a 95% HPD (or confidence) interval for u is (19.03,21.73); note that

159,0.025 =2.0003. While Bayesians have Pr(19.03 ~,u ~ 21.731 x) =0.95, the statement

Pr(19.03 ~ jJ ~ 21.73) =0.95 cannot be made by non-Bayesians although they would like to

do so!

HOP regions can be constructed for multivariate parameters (e.g., see Box and Tiao
1973), and simultaneous intervals can be constructed for many parameters (e.g., see Besag,
Green, Higdon, and Mengersen 1995).

IV. HYPOTHESIS TESTING

Bayesians think about hypotheses as models, and so for testing one hypothesis versus
another, two models are actually compared. In non-Bayesian statistics, unknown to the
investigator one hypothesis is correct and this is always true regardless of the data, and the
null and the alternative hypotheses enter the problem asymmetrically. In Bayesian analysis,
these hypotheses (or models) enter the problem symmetrically (i.e., it does not matter which
is the null hypothesis and which is the alternative hypothesis). Bayesians have uncertainty
about these models and a priori they put a "lump" of probability on each model (or
hypothesis). The evidence for one model or the other is measured by the Bayesfactor.

Let M1 and M2 be the two competing models. A priori P(M1)=1-P(M2 ) , and

these probabilities are specified by the user. Then, by Bayes' theorem a posteriori,
P(M( Ix) =1-P(M2 1x) , the prior odds of M( to M2 are P(M1)/P(M2 ) , and the posterior

odds are P(M( 1x)/P(M2 1x). Finally, the Bayes Factor (BF) is

Bf =Posterior Odds .
Prior Odds

Here BF is interpreted as the evidence provided by the data for M 1 beyond that

provided by the prior. We note that the Bayes factor is related to the marginal likelihoods of
Mk,

and 1rM
t
(B) must be proper for sensible calibration. Note that if B is a point mass at B, then

f(x) = f(x IB). Using Bayes' theorem, it is easy to show that the Bayes factor is the ratio of

the marginal likelihoods, f(x 1M1)/f(x 1MJ. As you can see integrating over the parameter

space could be an enormous task.

Kass and Raftery (1995) gave a "rule of thumb" to judge the strength of evidence for
M1 in Table 1.
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Table 1: Rule of thumb ofstrength ofevidence for M I

27 .

Bf
1;S; Bf < 3
3 ;S;Bf <20
20;S; Bf <150
Bf~150

10~(BF)

0-1.099
1.099- 2.996
2.996- 5.011
5.011-

Evidence
little

positive

strong

very strong

Let us consider a simple example. Consider testing for association in a r x c
categorical table with cell counts nJA;' j =1, ...,r, k =I,...,c. We fit a multinomial-Dirichlet

model under association (as) and under no association (nas), Both models have
nip - Multinomial(n,p). The model with association hasp - Dirichlet(1,...,I). Note-that by

no association we mean that PJA; =pY)p~2), j =I,...,r, k =1, ...,c, where

~' ll) =1 and ~c p~2) =1. A priori, we take p(l) - Dirichlet(1,...,I) and independently
~J=I J ~A;=I

p(2) _ Dirichlet(1, ...,I) where p(l) and p(2) have r and c components respectively. It is easy

to show that the marginal likelihoods are
p as (n) =(rc -1)!n!/(n + rc -I)!

and

n' 'nc ,()_ ()(r-l)!(c-l)! (n+rc-l)! J=lnr A;=l n.•.
P- n - Pas n (rc-I)! (n+r-I)!(n+c-I)! n' nc n.!

J=I hI JA;

Of course, the standard Pearson chi-squared statistic can be used, but when the assumptions
of the multinomial distribution are violated, one alternative is to construct appropriate models
and use the Bayes factor.

Consider our data in Table 2 on a 3x 3 categorical table of bone mineral density
(BMD) and family income (FI). Under independence (i.e., no association) the observed chi
squared statistic is 12.7 on 4 degrees of freedom with a p-value of .013, and no association
is rejected. The marginal likelihoods are p_(n) =-46.2 and pas(n) =-49.6 resulting in a

log Bayes factor of 3.40 for evidence of no association relative to association. Therefore,
while the chi-squared test provides strong evidence against no association, the log Bayes
factor provides strong evidence for no association. Thus, there is a contradictory evidence for
no association. The Pearson chi-squared statistic is dominated by cells (3,1) and (3,3) with

squares of the Pearson residuals being 4.61 and 6.15 respectively (the observed chi-squared
statistic is 12.7). We have also collapsed the two categories, osteopenia and osteoporosis,
into a single category forming a 2x 3 categorical table. For this 2x 3 categorical table, the
chi-squared test statistic is 1.7 on 2 degrees of freedom with a p-value of .42. The marginal
likelihoods are pnas(n).= -28.2 and p as (n) =-32.0 resulting in a log Bayes factor of -3.81.

Therefore, both tests suggest no association for this 2x 3 table.
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Table 2. Classification ofbone mineral density (BMD) and family income (FI) for 1,844
white females, at least 20 years old (20+)

BMD
1
2
3

I
FI

1 2 J
621 290 284
260 131 117
93 30 18

NOTE: BMD: 1(> 0.82g/cm 2; normal), 2(> 0.64,~0.82g/cm 2; osteopenia), 3(~ 0.64g/cm2;

osteoporosis); FI: 1« $20,000), 2(~' $20,000,< $45,000), 3(~ $45,000); BMD is only
measured for age 20+.

Finally, we note that the Bayes factor may be sensitive to prior specifications,
especially when there are not enough data to estimate the parameters under test; see Sinharay
and Stern (2002) for an interesting discussion on nested models. How sensitive is the Bayes
factor to the choice of the prior distributions? First, note that the prior density that any
reasonable person might use in this problem is the Dirichlet distribution because the prior

. density and the posterior density are both Dirichlet (i.e., within a conjugate family the
arithmetic is simple). For the model with..association we have selected the prior distributions
to be p - Dirichleuj-) and for the model with no association p(l) - Dirichlet(a) and

independently p(2) ,- Dirichlet(.p.). Let n~l) =I:=I nj k , j =1, ...,r and

n~2) =I~=I S2j k , k == 1, ...,c. Then, it is easy to show that the Bayes factor for a test of

association versus no association is

BF = Drc(n + y)/Dr(n~l) + a)Dc(n~2) + P)
Drc(y)/Dr(a)Dc(p) ,

where Dr(u) refers to the Dirichiet function with components, u1"",ur etc. Then, we choose

each of the components of a, P and y to be K (e.g., in pas(n) and pnas(n), K =1).

Sensitivity to the choice of prior distributions can be studied in terms of K. Here K =1
corresponds to the prior distributions that are usually used in the multinomial-Dirichlet
model, and k =.50, the Jeffreys' prior. Thus, we have chosen K = .25,0.5, 1.,1.5,2, 3, and

the corresponding Bayes factors (log scale) are 4.7,3.6,3.4,3.9,4.7,6.6. Thus, while the
Bayes factor is sensitive to the choice of the prior distributions, it is not too sensitive. Of
course, if there is informative prior information, in which K is substantially large, it is a
different issue.
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V. MARKOV CHAIN MONTE CARLO METHODS

29

The Gibbs sampler is a Monte Carlo integration method which proceeds by a
Markovian updating scheme. It was developed formally by Geman and Geman (1984) in the
context of image restoration. In the statistical framework, Tanner and Wong (1987) used
essentially this algorithm in their substitution sampling approach to missing data problems.
Gelfand and Smith (1990) brought to the attention of Bayesians how applicable the Gibbs
sampler is to general parametric Bayesian computations; but see Casella and George (1992)
for a simple explanation.

We summarize the main features of the Gibbs sampler. Suppose that we have a
collection of p (possibly vector-valued) random variables 81'...,f}p' and samples may be

generated by some method, given values of the appropriate conditioning random variables
from the full conditional distributions, denoted generically by
f(8~ I81" ..,8._1,8s+1' ...,8p ) ' s =I,...,p. Under mild conditions (see Besag (1974)), these

conditional distributions uniquely determine the full joint distribution f(81" ..,8p ) ' and hence

all marginal distributions f(8.), s =I,...,p. The Gibbs sampler generates samples from the

joint distribution as follows. Given an arbitrary starting set of values 81(0),...,8~0) , draw 8?)

from f(8
J

18iO), ...,8~0»), then 8il
) from f(8218?>'8iO), ...,8~0»), and so on up to 8~1) from

f(8p I81(J) , ... , 8~~1) to complete one iteration of the scheme. After t such iterations one

obtains (81(t ) , ... , 8~t). Geman and Geman (1984) show under mild conditions that this p

tuple converges in distribution to a random observation from f(81" ..8p ) as t ~ 00.

The iterates before convergence occurs, called the "bum in," are discarded, because
these iterates are not from a stable process. One can then "thin out" the iterates to obtain a
random sample from the joint posterior density. This is monitored using the autocorrelation

function. Thus, a random sample 8(h),h=I, ...,M, where M is chosen to give the highest

precision to the estimates of the posterior densities, can be obtained. One can study posterior
summaries (mean and standard deviation) to see what value of M one needs for convergence
of the estimates, not the Gibbs sampler itself, or rely on a reasonable sample size calculation.

Gelfand and smith (1990) recommend a density estimate of the form

M
A _ " (h)_f(8.)- L..Jf(8. 18r ,r-I, ...,p,r:t;s)IM.

h=1

This is a discrete mixture distribution, and is, in fact, a Monte Carlo integration to accomplish
the desired marginalization. Gelfand and Smith (1990) call this process Rao
Blackwellization, after the well-known Rao-Blackwell theorem in non-Bayesian statistics.
There may also be interest in a function of the parameters, say W(81'...,8p ) ' Each p -tuple

((J.(h) 8(h» id . b d W(h) - W(Ll(h) 8(h» h . I d' ibuti .
I , ..., p provi es an 0 serve = °1 , ..., P W ose margma istn ution IS

approximately f(W). A Rao-Blackwellized density ~stimator can also be obtained. If 8.
actually appears as an argument of W, the' complete conditional density of
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W(Bs IBr, r =l, ...,p, r"* s) can be obtained by univariate transformation from that of

Bs I(Br,r =l,...,p, r"* s).

There is virtually no limit to the dimension, p, and there are generalizations of the

Gibbs sampler. One important generalization is the Metropolis-Hastings sampler, which is
useful when it is difficult to apply the Gibbs sampler; see Chib and Greenberg (1995) for a
pedagogical review. There are other tricks that can be used (e.g., see Robert and Casella,
1999).

I will now present a simple example of the implementation of the Gibbs sampler. A
useful and flexible type of prior distribution is a hierarchical prior; see Good (1980) for
discussion and early references. It is often convenient to model the sampling process and
one's prior belief (or experience) in stages. Lindley and Smith (1972) introduced the
hierarchical Bayesian linear model with three stages for normal data with normal priors, and
Smith (1973) extended this work. Consider the following simple model,

i.i.d.

YkP Yk2""'Y.tm, IPk,U
2

'"" N(Pk,u
2),k =l,....n,

iid

PPP2,....u; IB,02 ~N(B,02).

This is a one-way random effects model in which there are n groups of individuals with the

k 'h having mk individuals. This model expresses indifference among the individuals within a

group and indifference among the groups. A priori, B, U -2 , and 0-2 are independent with
i.i.d.

p(B) =1 and u-2,0-2,"" Gamma(aI2,bI2),

where a=b=.002.

Let Yk=L;~l Yk/mk and Ak =021(02+ a? I mk), the conditional posterior densities

required to run the Gibbs sampler are
ind

Pk IB,u2,02,y 5 '"" Normal{~Yk+(1- ~)B,(l-~)02},k=I,....n, (1)
n

B Iu.a? ,02,y 5 ~ Normal{LPk I n,02 In}, (2)
k=l

rn,
In u-2Ip,B,02,ys ~Gamma{(a+~mk)/2,(b+L L(Y/g' -Pk)2)/2}, (3)

k=S k=S j=l

o-2Ip,O,u2,ys
~Gamma{(a+n)/2,(b+ L(Pk -O)2)/2}, (4)

k=S

By starting with any reasonable values of B, u 2 and 02
, one can perform the Gibbs sampler

to draw samples from (1), (2), (3) and (4), in tum, iterating the process until convergence.
One will have to "burn in" and might have to "thin out" the Gibbs sampler to obtain a
"random" sample (p(h) ,B(h) ,U2(h) ,02(h»), h =1,..., M for a reasonably large value of

M (M ~1000).
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VI. MODEL CHOICE AND ASSESSMENT
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An important part of a scientific investigation is to select a model from a set of
plausible competing models, and a scientist would need to assess how well the selected
model fits the data (see Box 1976, 1980). To accomplish these tasks, Bayesians have
modified non-Bayesian methods such as those based on cross-validation analyses and
deviances.

Let y;,i =1, ...,n be a sample from f(y; 10) and let f(y 10) denote the joint

probability density (or mass) function of y. Suppose also that there is a prior density 1!(0),

and the posterior density 1!(01 y) is proper. Note that for the measures discussed here 1!(0)
does not have to be proper, an advantage over the Bayes factor. To assess the goodness offit,
one can consider the posterior predictive ordinate

Pl'O, = f(y; Iy(i)' i =1, ....n,

where y (i) is the vector of all observations excluding the ;th observation. Note that if the y;

are discrete, PPO; is the posterior predictive probability that y; takes the observed value

given that it is omitted. Also, note that

Pl'O, = f(y)/f(Y(i»' i =1, ....n,

where f(y) = Jf(y 10)1!(0)dO is the marginal likelihood for data y. Thus, PPO; is the ratio

of the marginal likelihood of all the observed values to the marginal likelihood of all the
observed values excluding the i 'h observation. Thus, if the model fits well, a plot of PPo;

versus Yj should show a horizontal line; those points away from the horizontal line do not

support the model, and are possible outliers.

One can use a summary measure to compare different models. A reasonable measure
is the arithmetic mean of the logarithm of the PPO;, called the posterior predictive score,

1 n

PPS =- :L 10g(PPOJ
n ;=1

under each model. We can choose the model with the largest PPS.

It is now straight forward to compute the PPO; using Monte Carlo methods (see

Gelfand, Dey and Chang 1992 and Gelfand and Dey 1994). They recommend an estimator,

PPOp of PPO; as

- ~ (k) (k) (k) _ f(y (;) 10(k» / f(y 10(k»
PPO j = Lo OJ; It», IY(;)'O ), OJ. - ,

k=l I :L:,f(Yu) 10(k»/ f(y lo(k»

i =1, ...,n, h =1, ...,M . Here O(h), h =1, ...,M , are a random sample from the posterior density

1!(01 y). When YI, ...,Yn are independent,
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M

PPOj =IliJ?)it», ~(k),
k=)

One can also define the standardized cross-validation residual as

That is, the ;th observed Xi is "held out" and compared with its point estimator, Etx, Ix(i}) ,

which is evaluated without using the observed Xi' Measures like DRESj are used as in non

Bayesian analyses. Nandram, Sedransk and Pickle (2000) use the DRESj in a summary form,

to rank competing models by counting the number of values such that IDRESi I~ q (e.g.,

q == 3), which they call "number of outliers." They also use DRESj to study the models

individually.

Using the minimum posterior predictive loss approach (Gelfand and Ghosh 1998),
under squared error loss, the deviance is given by

D=P+G,

where P is penalty for over-fitting or under-fitting and G is a goodness-of-fit measure,

P= L Var(x;ep Ixo
bs), G =I {E(x;ep IXObS)_X~bSr.

i i

Here, expectations are taken under

f(x;ep IxO
bs) =Jf(x;ep IO);r(0 Ixo

bs we,

where xobs is the vector of observations and xrep future draws; see Gelfand and Ghosh (1998)
for further discussion. Other related measures based on expected predictive deviance are
given by Spiegelhalter, Best, Carlin, and Linde (2002).

I now consider a simple illustrative example. Suppose it is required to discriminate
between the two models, M, and M 2 , where for M ,'

iid

Xl"'" Xn IIJ, a 2- Normahzz, ( 2),p(lJ, ( 2)
OC 1I a 2

and for M 2 ,

iid

xl'""",xn Ia,fJ - Gamma(a,fJ),p(a,fJ) a: 1/(1+ a)2

Note that these two models are related with IJ = a/fJ and a 2= j.J/fJ .

Then, letting t/JO denote the standard normal density function, x =I;=l x/n and

S2 =I;=) (xj - X)2 I(n -1), for M) it is easy to show that
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M 1 (h) 1 (h) M 1 (k)
M, _" (h) ",{X; - f.1.} (h) _ [ ",{X; - f.1. }]-I/"[ ",{x; - f.1. }-I

PPO; - L..J OJ; ----W'" (h) ,OJ; - ----W'" (h) £..J ---W-'" (k) ],
h=1 a a a a k=1 a a

where (p""IT""), h = 1, ...,M are a random sample from p IIT',i - Nonna{i, :'J and

(j-2 IS2 - Gamma(n -1 , (n -1)s2 J. Note that the posterior density p(f.1.,(j21 x) is proper.
22·

For M2, letting x a = I;=\ x/n and x g = (rr;=l x;)l/n , we have

M
PPO;M2 =I OJ?)p(h)a(hl

x~lhl-le-IP)xl Jr(a(h»),
h=l

OJ?) =[p(h)a1h) x~(h)-le-lfh)X' Jr(a(h»)rlIf [p(k)a(A~x~(ll-le-p<l)XIJr(a(k»)rl,
k=l

where (a(h),p(h»),h=I, ...,M are a random sample from pla,x-Gamma(na,nXa ) and

pea Ix) oc {f(na)Jr(aY nna}(xlxaya1(1 +a)2, a > o. Note that a sufficient condition for

propriety of p(a,P[x) is that alia < x /i s» a condition that is met for many practical

problems.

• "M (h) (h)Fmally, for M1 , Eix, Ixu») =L..Jh=1 OJ; f.1. , and

i =1, ....n, h =l, ...,M. A similar expression holds for M 2 • Also, it is easy to write down

similar formula for P and G .

In a simple example, the data consist of a sample of the tensile strengths of 33 steel
bars; see Nandram (1995) for a description of the data. A 95% credible interval for f.1. under

the normal model is (89.4,91.7) and under the gamma model is (89.3,91.7); also a 95%

credible/interval for a is (397,1098). The DRES; and the PPO; for the two models are

respectively very similar; the number of DRES; > Lis' lO for both models, and the number of

DRES; > 2 is 0 for both models. Thus, the models are very similar. Can any differences

between these models be identified? In Table 3 we present the penalty (P), the goodness-of
fit ( G ), and the deviance (D ).
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Table 3: Comparison of the normal and the gamma models using the penalty (P), goodness
of-fit ( G) and deviance (D)

Model
Normal
Gamma

r G D
393 347 740
421 347 768

NOTE: Three significant digits are used, and the analysis is based on a sample of 10,000.
The goodness-of-fit measures for the two models are very similar, the penalty, and therefore
the deviance, is smaller for the normal model. Also, PPS is -2.57 for the normal model and 
2.62 for the gamma model. Thus, we conclude that the normal model is preferred.

VII. DISCUSSION

I have given a introductory tutorial to Bayesian statistics. In this final section, I will
discuss my experience in Bayesian statistics.

Bayesian statistics is ubiquitous in applications too numerous to mention here. But,
see Nandram, Sedransk and Smith (1997) for an application on the size of a fish stock, and
Nandram, Sedransk and Pickle (2000) for an application on chronic obstructive pulmonary
disease. Bayesian statistics is to be preferred over non-Bayesian statistics because once a
sensible model is written down, it can be accurately analyzed, even if one needs to use Monte
Carlo methods. Not too long from now, it is believed that non-Bayesian statistics will give
way to Bayesian statistics at least in applications. Of course, non-Bayesian statistics, in the
form of probability calculations, is necessary. Markov chain Monte Carlo methods, the state
of the art, have emerged as standard Bayesian computational methods. Enormous progress
has been made by Bayesians over the past fifteen years, and with the WinBUGS software
(see Cowles 2004 for a review ofWinBUGS 1.4) many applied statisticians and scientists are
now invading the area. In my work, I use Fortran and SAS extensively, and I believe that a
researcher in Bayesian statistics (methodology) should use a high level language such as
Fortran for computations.

Bayesian methods can be learnt by taking courses in Mathematical Statistics (yes,
non-Bayesianl), Numerical Analysis and a few courses in Bayesian Statistics. I believe that
every graduate student in statistics should have a course in Bayesian statistics. Of course, one
should take courses in linear models, categorical data, time series, survey sampling; the more
you know, the better it is. As a graduate student, I took a two-course sequence in Bayesian
Statistics, taught by Professor James Dickey when he was at the State University of New
York at Albany. He used De Groot (1970), Box and Tiao (1973) and some of his own lecture
notes. In one of the courses I made a presentation on Smith (1973). Earlier I took a Bayesian
course, taught by Dr. Ann Mitchell of Imperial College, when I was in the Master's Program
in Statistics; no text book was recommended. When I was a doctoral student at the University
of Iowa, I made two lengthy Bayesian presentations. One was in an advanced course in
Multivariate Analysis, taught by Professor George Woodworth, in which I made a
presentation on "Some aspects of multivariate analysis," Box and and Tiao (1973, Ch 8). The
other was in the seminarin Order Restricted Inference, taught by Professor Tim Robertson, in
which I made a presentation on Sedransk, Monahan and Chiu (1985). But most of what I
have learnt in Bayesian Statistics came from its use in my research and the Bayesian course I
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teach at Worcester Polytechnic Institute (WPI). When I teach Bayesian Statistics, I use the
text book by Gelman, Carlin, Stem and Rubin (2004), and those of Congdon (2001), Box and
Tiao (1973), De Groot (1970) and others for reference. I recommend Box and Tiao (1973)
highly, but it is not appropriate for my course cit WP!.

Bayesian statistics is an area that has received much attention in the past fifteen years,
and there is still a lot that can be done in the following areas: (a) Construction of appropriate
prior distributions, objective ones when there is no prior information; (b) Full Bayesian
methods to assess model fit accurately; (c) Nonparametric methods without relying heavily
on likelihoods; and (d) Computation methods when there are very awkward likelihood
functions and a Metropolis-Hastings sampler is not feasible. For example, in survey sampling
(the area in which I work mostly), when there is nonresponse or selection bias, prior
construction is not straightforward and the posterior densities cannot be sampled easily using
a Metropolis-Hastings sampler. In this case (a)-(d) are useful. Nowadays data are collected
with all kinds of problems (e.g., nonidentifiability issues, key information is missing,
correlation in data values), and one needs to input extra information beyond the data. Good
models can help.
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